Chapter 9 e

Multilinear Algebra and Determinants

‘We begin this chapter by investigating bilinear forms and quadratic forms on a
vector space. Then we will move on to multilinear forms. We will show that the
vector space of alternating n-linear forms has dimension one on a vector space of
dimension n. This result will allow us to give a clean basis-free definition of the
determinant of an operator.

This approach to the determinant via alternating multilinear forms leads to
straightforward proofs of key properties of determinants. For example, we will see
that the determinant is multiplicative, meaning that det(ST) = (det S)(det T) for
all operators S and T on the same vector space. We will also see that T is invertible
if and only if det T # 0. Another important result states that the determinant of
an operator on a complex vector space equals the product of the eigenvalues of
the operator, with each eigenvalue included as many times as its multiplicity.

The chapter concludes with an introduction to tensor products.

( standing assumptions for this chapter w

e F denotes R or C.
e Vand W denote finite-dimensional nonzero vector spaces over F.
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9A Bilinear Forms and Quadratic Forms

Bilinear Forms

A bilinear form on V is a function from V x V to F that is linear in each slot
separately, meaning that if we hold either slot fixed then we have a linear function
in the other slot. Here is the formal definition.

(9.1 definition: bilinear form h

A bilinear form on V is a function f: Vx V — F such that

v B(v,u) and v — B(u,0)

are both linear functionals on V for every u € V.

J

For example, if V'is a real inner prod- Recall that the term linear functional,
uct space, then the function that takes an used in the definition above, means
ordered pair (14,v) € Vx Vto (u,0)iS 4 inear function that maps into the
a bilinear form on V. If V' is a nonzero  scalar field F. Thus the term bilinear
complex inner product space, then this  functional would be more consistent
function is not a bilinear form because  terminology than bilinear form, which
the inner product is not linear in the sec-  unfortunately has become standard.
ond slot (complex scalars come out of the
second slot as their complex conjugates).

If F = R, then a bilinear form differs from an inner product in that an inner
product requires symmetry [meaning that f(v,w) = S(w,v) for all v,w € V]
and positive definiteness [ meaning that g(v,v) > 0 for all v € V\{0}], but these
properties are not required for a bilinear form.

9.2 example: bilinear forms |
e The function B: F> x F* — F defined by

B((x1, %2, %3)5 (Y1, Y25 Y3)) = X1y — SxoY3 + 22314
is a bilinear form on F3.

e Suppose A is an n-by-n matrix with A; ; € F in row j, column k. Define a
bilinear form 4 on F" by

ﬁA((x17""xn>’ (]/1,---11/,1)) = Z Z Aj’kxjyk.

k=1j=1

The first bullet point is a special case of this bullet point with n = 3 and

01 0
A= 0 0 =5 [
2 0 0
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e Suppose V is a real inner product space and T € £(V). Then the function
B: VxV — R defined by

Bu,v) = (u, To)
is a bilinear form on V.
e If n is a positive integer, then the function f: 7, (R) x P, (R) — R defined by
Bp.q) =p2)-q'(3)
is a bilinear form on 7, (R).
e Suppose ¢, T € V' Then the function 5: Vx V — F defined by
pu,v) = @) - T(v)
is a bilinear form on V.

e More generally, suppose that ¢,,...,¢,, 71,....,T, € V. Then the function
B: VxV — F defined by

Bu,v) = @ (u) - 1, (0) + - + @, (W) - T,(vV)

is a bilinear form on V.

A bilinear form on V is a function from V' x V to F. Because V x V is a vector
space, this raises the question of whether a bilinear form can also be a linear map
from Vx V to F. Note that none of the bilinear forms in 9.2 are linear maps except
in some special cases in which the bilinear form is the zero map. Exercise 3 shows
that a bilinear form § on V is a linear map on V x V only if § = 0.

ﬂa.a definition: V@ w

LThe set of bilinear forms on V is denoted by V2, J

With the usual operations of addition and scalar multiplication of functions,
V2 is a vector space.

For T an operator on an n-dimensional vector space V and a basis eq, ..., ¢,
of V, we used an n-by-n matrix to provide information about T. We now do the
same thing for bilinear forms on V.

@.4 definition: matrix of a bilinear form, M (p) )

Suppose g is a bilinear form on V and e, ..., e, is a basis of V. The matrix of
p with respect to this basis is the n-by-n matrix M () whose entry M (B); x
in row j, column k is given by

If the basis eq,...,e, is not clear from the context, then the notation

KM('B’ (€1, ....€,)) is used. )
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Recall that F">" denotes the vector space of n-by-n matrices with entries in F
and that dim F»" = n? (see 3.39 and 3.40).

( 9.5 dimV® = (dimV)? w
LSuppose ey, ...,e, is a basis of V. Then the map  — M (p) is an isomorphist

of V@ onto F" Furthermore, dim V@ = (dim V)2

Proof The map B — M (B) is clearly a linear map of V' into F™".
For A € F*", define a bilinear form 4 on V by

n n
Pa(xieq + -+ + X0, Y161 + -+ Yue,) = kZ1 ZlAj,kxjyk
—1j=
forxq, ..., X,, Y1, -y, € F (it V.= F" and e, ..., e, is the standard basis of F”, this
B 4 is the same as the bilinear form j3, in the second bullet point of Example 9.2).
The linear map g — M (B) from V® to F™" and the linear map A — S, from
F"" to V@ are inverses of each other because 5 = f forall p € V@ and
M(By) = Aforall A € F™7", as you should verify.
Thus both maps are isomorphisms and the two spaces that they connect have
the same dimension. Hence dim V® = dim F»" = n? = (dim V)2

Recall that C* denotes the transpose of a matrix C. The matrix C" is obtained
by interchanging the rows and the columns of C.

/

9.6 composition of a bilinear form and an operator

~

Suppose S is a bilinear form on V and T € £(V). Define bilinear forms «
and p on V by

a(u,v) = f(u,Tv) and p(u,v) = f(Tu,v).

Letey,...,e, be a basis of V. Then

L M) = M(B)M(T) and M (p) = M(T)'M(B).

Proof 1Ifj,k € {1,...,n}, then

M(w); . = ale;,e)
= :B(e]'9 Tek)

:B(ej’ i MAT) i 3m)
m=1

Z ﬁ(ej9 em)M(T)m,k
m=1

(MPM D)), ;-
Thus M (a) = M (B)M (T). The proof that M (o) = M (T)'M () is similar.
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The result below shows how the matrix of a bilinear form changes if we change
the basis. The formula in the result below should be compared to the change-
of-basis formula for the matrix of an operator (see 3.84). The two formulas are
similar, except that the transpose C* appears in the formula below and the inverse
C~! appears in the change-of-basis formula for the matrix of an operator.

9.7 change-of-basis formula

Suppose B € V@. Suppose ey, ...,e, and f,, ..., f,, are bases of V. Let
A=M(B,(e1,....e,)) and B =M(B,(f1,..s [n))
and C = M (L (eq, ..., €,), (f1, .- f,)). Then
— Ct
\_ A = C'BC. )
Proof The linear map lemma (3.4) tells us that there exists an operator T € £(V)

such that T f; = e, foreach k = 1, ..., n. The definition of the matrix of an operator
with respect to a basis implies that

M(T, (f1,-r f)) = C.

Define bilinear forms «, p on V by

a(u,v) = B(u,Tv) and p(u,v) = a(Tu,v) = (Tu, Tv).
Then ﬁ(ej,ek) = IB(Tfj, Tf) = p(fj,fk) forall j,k € {1,...,n}. Thus

A= M0, (fiseer f))
= CM (&, f1er f)
= C'BC,

where the second and third lines each follow from 9.6.

9.8 example: the matrix of a bilinear form on P,(R) |
Define a bilinear form  on 7, (R) by S(p,q) = p(2) - 4'(3). Let
A=M(B,(1,x=-2,(x—=3)%)) and B=M(B,(1,x1%))
and C = M (I, (1,x — 2, (x —3)?), (1,x,x?)). Then
01 0 01 6 1 -2 9
A= 0 0 0 and B=| 0 2 12 and C=| 0 1 -6 [
010 0 4 24 0 0 1

Now the change-of-basis formula 9.7 asserts that A = C'BC, which you can verify
with matrix multiplication using the matrices above.
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Symmetric Bilinear Forms

9.9 definition: symmetric bilinear form, nyzﬁn

A bilinear form p € V@ is called symmetric if

o, w) = p(w,u)

for all u, w € V. The set of symmetric bilinear forms on V is denoted by VS(YZKL

N J

| 9.10 example: symmetric bilinear forms |
e If Vis areal inner product space and p € V® is defined by
p(u,w) = (U, w),
then p is a symmetric bilinear form on V.
e Suppose V is a real inner product space and T € £(V). Define p € V? by
p(u,w) = (u, Tw).

Then p is a symmetric bilinear form on V if and only if T is a self-adjoint
operator (the previous bullet point is the special case T = I).

e Suppose p: L(V) x £L(V) — F is defined by
(5, T) = tr(ST).

Then p is a symmetric bilinear form on £ (V) because trace is a linear functional
on £L(V)and tr(ST) = tr(TS) forall S, T € £(V); see 8.56.

(9.11 definition: symmetric matrix w

b square matrix A is called symmetric if it equals its transpose. J

An operator on V may have a symmetric matrix with respect to some but not all
bases of V. In contrast, the next result shows that a bilinear form on V has a sym-
metric matrix with respect to either all bases of V or with respect to no bases of V.

\

/9.12 symmetric bilinear forms are diagonalizable

Suppose p € V2. Then the following are equivalent.
(a) pis asymmetric bilinear form on V.

(b) M(p, (eq,---,€,,)) is a symmetric matrix for every basis e, ...,e,, of V.

(c) M(p, (e, .- €,,)) is a symmetric matrix for some basis ey, ..., e, of V.

\(d) M (p, (e, ...,e,)) is a diagonal matrix for some basis ey, ..., e, of V.
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Proof  First suppose (a) holds, so p is a symmetric bilinear form. Suppose
eq.....e, isabasis of Vand j,k € {1,...,n}. Then p(ej, ex) = Pk e]-) because p
is symmetric. Thus M (p, (eq,....€,)) is a symmetric matrix, showing that (a)
implies (b).

Clearly (b) implies (c).

Now suppose (c) holds and ¢4, ..., e, is a basis of V such that M (p, (e, ...,€,,))
is a symmetric matrix. Suppose u,w € V. There exist a4, ...,4,,b4,....,b, € F
such thatu = aqe; + --- +4a,e, and w = bye; + --- + b,e,,. Now

paw) =p( Y ae; ) biex)
j=1 k=1

= ) abyple.e)
j=1

k=1

=2, ) abioee)

j=1k=1

=p( ) biew ) ae))

k=1 j:l
= p(w, u),

where the third line holds because M (p) is a symmetric matrix. The equation
above shows that p is a symmetric bilinear form, proving that (c) implies (a).

At this point, we have proved that (a), (b), (c) are equivalent. Because every
diagonal matrix is symmetric, (d) implies (c). To complete the proof, we will
show that (a) implies (d) by induction on n = dim V.

If n = 1, then (a) implies (d) because every 1-by-1 matrix is diagonal. Now
suppose n > 1 and the implication (a) = (d) holds for one less dimension.
Suppose (a) holds, so p is a symmetric bilinear form. If p = 0, then the matrix of
© with respect to every basis of V is the zero matrix, which is a diagonal matrix.
Hence we can assume that p # 0, which means there exist #,w € V such that
p(u,w) # 0. Now

20(u,w) = p(u +w,u +w) — p(u,u) — p(w, w).

Because the left side of the equation above is nonzero, the three terms on the right
cannot all equal 0. Hence there exists v € V such that p(v,v) # 0.

LetU = {u € V : p(u,v) = 0}). Thus U is the null space of the linear
functional u — p(u, v) on V. This linear functional is not the zero linear functional
because v & U. Thus dimU = n — 1. By our induction hypothesis, there is a
basis ey, ..., e, _; of U such that the symmetric bilinear form pl;;,.;; has a diagonal
matrix with respect to this basis.

Becausev & U, thelistey, ...,e,_1,vis abasis of V. Supposek € {1,...,n—1}.
Then p(e,v) = 0 by the construction of U. Because p is symmetric, we also
have p(v,e;) = 0. Thus the matrix of p with respectto ey, ...,e,, _1,v is a diagonal
matrix, completing the proof that (a) implies (d).
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The previous result states that every symmetric bilinear form has a diagonal
matrix with respect to some basis. If our vector space happens to be a real inner
product space, then the next result shows that every symmetric bilinear form has
a diagonal matrix with respect to some orthonormal basis. Note that the inner
product here is unrelated to the bilinear form.

( 9.13 diagonalization of a symmetric bilinear form by an orthonormal basisw

Suppose V is a real inner product space and p is a symmetric bilinear form on
V. Then p has a diagonal matrix with respect to some orthonormal basis of V.

Proof Let fi,..., f, be an orthonormal basis of V. Let B = M (p, (fi, ..., f,,))-
Then B is a symmetric matrix (by 9.12). Let T € £(V) be the operator such that
M(T, (f1,.... f,)) = B. Thus T is self-adjoint.

The real spectral theorem (7.29) states that T has a diagonal matrix with respect
to some orthonormal basis ey, ...,e, of V. Let C = M (I, (e, ....e,), (f1, .o, f)).
Thus C1TC is the matrix of T with respect to the basis e;, ..., e, (by 3.84). Hence
C~'TC is a diagonal matrix. Now

M(p, (e, ....e,)) = C'TC = C'TC,

where the first equality holds by 9.7 and the second equality holds because C is a
unitary matrix with real entries (which implies that C~1 = C!; see 7.57).

Now we turn our attention to alternating bilinear forms. Alternating multilinear
forms will play a major role in our approach to determinants later in this chapter.

/9.14 definition: alternating bilinear form, Vélzt) A
A bilinear form & € V? is called alternating if
a(v,v) =0
Cor all v € V. The set of alternating bilinear forms on V is denoted by Vélzt). D

| 9.15 example: alternating bilinear forms |
e Suppose n > 3 and a: F" x F" — F is defined by
a((X1, e X)), (Y1 -0 Yn)) = X1Yp — X1 + X1z — Xal1-
Then « is an alternating bilinear form on F".
e Suppose ¢, T € V. Then the bilinear form a on V defined by
a(u,w) = eu)T(w) — ¢(w)T(u)

is alternating.
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The next result shows that a bilinear form is alternating if and only if switching
the order of the two inputs multiplies the output by —1.

/

9.16 characterization of alternating bilinear forms

oY

A bilinear form « on V is alternating if and only if

a(u,w) = —o(w, u)

\for allu,w e V.

Proof First suppose that « is alternating. If u,w € V, then
0=a(u+w,u+w)
=wa(u,u) +a(u,w) +a(w,u) + a(w,w)
=a(u,w) + a(w, u).

Thus a(u, w) = —a(w, u), as desired.

To prove the implication in the other direction, suppose a (1, w) = —a(w, u)
for all u,w € V. Then a(v,v) = —a(v,v) for all v € V, which implies that
a(v,v) = 0forall v € V. Thus « is alternating.

Now we show that the vector space of bilinear forms on V is the direct sum of
the symmetric bilinear forms on V and the alternating bilinear forms on V.

ﬁa.w Ve =v3 e VY

The sets Vq(fr)n and V;lzt) are subspaces of V?. Furthermore,

Ve =V e vy

Proof The definition of symmetric bilinear form implies that the sum of any two
symmetric bilinear forms on V' is a bilinear form on V, and any scalar multiple of
any bilinear form on V is a bilinear form on V. Thus ngz,; is a subspace of V2,
Similarly, the verification that V;lzl) is a subspace of V@ is straightforward.

Next, we want to show that V(@ = Vs(iﬁl + V,‘Elzl). To do this, suppose g € V2.
Define p,a € V® by

_ B(u,w) ;—ﬁ(w,u) and (i w) = B(u,w) gﬁ(w,u)'

Thenp € Vimanda € V', and B = p + & Thus V@ = Vi + V.
Finally, to show that the intersection of the two subspaces under consideration

equals {0}, suppose € Vb(yzﬁn N V;lzt). Then 9.16 implies that
B, w) = —p(w,u) = —p(u, w)

for all u,w € V, which implies that 8 = 0. Thus V@ = Vi) @ V),

by 1.46.

o(u,w)

as implied
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Quadratic Forms

(9.18 definition: quadratic form associated with a bilinear form, g

For f a bilinear form on V; define a function q4: V — F by g4(v) = f(v,0).
A function g: V — F is called a quadratic form on V if there exists a bilinear
form  on V such that g = g,.

Note that if § is a bilinear form, then g4 = 0 if and only if § is alternating.

| 9.19 example: quadratic form

Suppose B is the bilinear form on R® defined by

B((x1, X2, x3), (Y1, Y25 Y3)) = X1y1 — 4x1Y5 + 813 — 3x33.
Then g s is the quadratic form on R® given by the formula

(X1, X9, X3) = X7 — 4%125 + 8Xy x5 — 317,

The quadratic form in the example above is typical of quadratic forms on F”,
as shown in the next result.

~

/9.20 quadratic forms on F"

Suppose 7 is a positive integer and g is a function from F” to F. Then g
is a quadratic form on F" if and only if there exist numbers A; , € F for
j.k € {1, ...,n} such that
n n
q(xq, .. X,) = Z Z Aj XX

k=1j=1

\for all (xq,...,x,) € F". Y
Proof  First suppose q is a quadratic form on F”. Thus there exists a bilinear form
p on F" such that g = g4. Let A be the matrix of  with respect to the standard
basis of F™. Then for all (xq, ..., x,,) € F", we have the desired equation

q(xl""’xn) = ;B((xl"“’xn)’ (X], "'vxn)) = Z Z Aj,kx]'xk'

k=1j=1

Conversely, suppose there exist numbers A; , € F forj.k € {1, ..., n} such that

n k
Xy, e X)) = Z Z A]-,kx]-xk
k=1j=1
for all (x4, ...,x,,) € F". Define a bilinear form 8 on F" by

n k
B, s X))y Yo oY) = Z Z Aj’kxjyk.
k

=1j=1

Then g = gp, as desired.
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Although quadratic forms are defined in terms of an arbitrary bilinear form,
the equivalence of (a) and (b) in the result below shows that a symmetric bilinear
form can always be used.

9.21 characterization of quadratic forms

Suppose g: V' — F is a function. The following are equivalent.
(a) gis a quadratic form.

(b) There exists a unique symmetric bilinear form p on V' such that g = ¢,
(¢) gq(Av) = /\Zq(v) for all A € F and all v € V, and the function
(u,w) » q(u +w) — q(u) — q(w)
is a symmetric bilinear form on V.

(d) q(2v) = 4q(v) for all v € V, and the function
(u,w) = q(u +w) — q(u) — q(w)

is a symmetric bilinear form on V.
N J
Proof  First suppose (a) holds, so g is a quadratic form. Hence there exists a
bilinear form f such that g = g5. By 9.17, there exist a symmetric bilinear form p
on V and an alternating bilinear form « on V such that § = p + . Now

9=4q =4+ 9x = 9p-

If o' € V& also satisfies Gy =g, thenq, _, = 0;thus o' —p € v n V;lzt),
which implies that p” = p (by 9.17). This completes the proof that (a) implies (b).
Now suppose (b) holds, so there exists a symmetric bilinear form p on V such

thatg = ¢,. If A € Fand v € V then

g(Av) = p(Av, Av) = Ap(v, Av) = A?p(v,0) = A%q(v),

showing that the first part of (c) holds.

If u,w € V, then

qu+w) —qu) —qw) = p(u +w,u +w) — p(u,u) — p(w,w) = 20(u, w).

Thus the function (1, w) — g(u+w)—q(u)—q(w) equals 2p, which is a symmetric
bilinear form on V, completing the proof that (b) implies (c).

Clearly (c) implies (d).

Now suppose (d) holds. Let p be the symmetric bilinear form on V defined by
q(u +w) — q(u) — g(w)

> .

ou,w) =

If v € V, then
_9(0) —q(©) —q@) _ 49(0) —29(@) _

0(v,0) = 2 2 q(v).

Thus g = q,,, completing the proof that (d) implies (a).
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9.22 example: symmetric bilinear form associated with a quadratic form |
Suppose g is the quadratic form on R® given by the formula
G(xXq, X9, X3) = X7 — 4x1 X, + 81 X3 — 3x 2

A bilinear form 8 on R® such that g = qp is given by Example 9.19, but this
bilinear form is not symmetric, as promised by 9.21(b). However, the bilinear
form p on R® defined by

P((X1, %0, X3), (Y1, Y2, Y3)) = X1¥1 — 2X1Yp — 2%y + 4x1Y3 + 4x3Y1 — 3x3Y3
is symmetric and satisfies g = g,

The next result states that for each quadratic form we can choose a basis such
that the quadratic form looks like a weighted sum of squares of the coordinates,

meaning that there are no cross terms of the form x;x with j # k.

9.23 diagonalization of quadratic form

Suppose g is a quadratic form on V.

(a) There exist a basis e;, ...,e,, of V.and A, ..., A, € F such that

2
n

glxseq + -+ x,0,) = AxF + -+ A
for all x4, ...,x, € F.

(b) If F = R and V is an inner product space, then the basis in (a) can be
\_ chosen to be an orthonormal basis of V. Yy,

Proof
(a) There exists a symmetric bilinear form p on V such thatq = g o (by 9.21). Now
there exists a basis ey, ..., e, of V such that M (p, (eq,...,€,)) is a diagonal
matrix (by 9.12). Let A4, ..., A, denote the entries on the diagonal of this
matrix. Thus
( ) /\j lf] = k,
e'a e = ~
PEPe =00 ifj 2k
forallj,k € {1,...,n}. If x;,...,x,, €F, then
q(xqeq + - +x,e,) = p(x18q + -+ + X6, X167 + - + X,€,)
= ¥ Y e
k=1j=1
= /\1X12 + -+ A”xnz,
as desired.

(b) Suppose F = R and V is an inner product space. Then 9.13 tells us that the
basis in (a) can be chosen to be an orthonormal basis of V.
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Exercises 9A

1

Prove that if § is a bilinear form on F, then there exists ¢ € F such that

px.y) = cxy
forall x,y € F.

Let n = dim V. Suppose § is a bilinear form on V. Prove that there exist
@15 eees P> Ty -0 T, € V' such that
pu,v) = @y (u) - 7, (V) + - + ¢, (1) - T, (0)

forall u,v € V.
This exercise shows that if n = dim V, then every bilinear form on V is of
the form given by the last bullet point of Example 9.2.

Suppose f: Vx V — F is a bilinear form on V and also is a linear functional
on Vx V. Prove that = 0.

Suppose V is a real inner product space and § is a bilinear form on V. Show
that there exists a unique operator T € £ (V) such that

p(u,v) = (u, Tv)

forallu,v e V.

This exercise states that if V is a real inner product space, then every
bilinear form on V is of the form given by the third bullet point in 9.2.

Suppose B is a bilinear form on a real inner product space Vand T is the
unique operator on V such that f(u,v) = (u,Tv) for all u,v € V (see
Exercise 4). Show that § is an inner product on V if and only if T is an
invertible positive operator on V.

Prove or give a counterexample: If p is a symmetric bilinear form on V, then
{veVv:puov) =0}
is a subspace of V.

Explain why the proof of 9.13 (diagonalization of a symmetric bilinear form
by an orthonormal basis on a real inner product space) fails if the hypothesis
that F = R is dropped.

Find formulas for dim Vf?,)n and dim Vglzt) in terms of dim V.
Suppose that n is a positive integer and V = {p € P,(R) : p(0) = p(1)}.
Definea: VxV — R by
1
wp) = | b

Show that « is an alternating bilinear form on V.
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10  Suppose that n is a positive integer and
V={peP,R):p0) =pd)andp’(0) =p'(1)}.
Define p: Vx V — R by

1 "
pip) = |y

Show that p is a symmetric bilinear form on V.
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9B Alternating Multilinear Forms

Multilinear Forms

(9.24 definition: V'™

For m a positive integer, define V™ by

Vit =Vx. xV.

m times

Now we can define m-linear forms as a generalization of the bilinear forms
that we discussed in the previous section.

-

9.25 definition: m-linear form, V", multilinear form

~

e For m a positive integer, an m-linear form on V is a function f: V" — F
that is linear in each slot when the other slots are held fixed. This means
that for each k € {1, ...,m} and all u,, ..., u,, € V, the function

V= B(Upy ey Ug 150y U g5 eees Upyy)
is a linear map from V to F.
e The set of m-linear forms on V is denoted by V™),

o A function S is called a multilinear form on V if it is an m-linear form on V
for some positive integer m1.
N J

In the definition above, the expression B(uq, ..., Ug_1, 0, Ui, 1, .., U,,) MEANS
B(v,uy, ...,u,,) if k =1 and means B(u,,...,u,,_,,0) if k = m.

A 1-linear form on V is a linear functional on V. A 2-linear form on V is
a bilinear form on V. You can verify that with the usual addition and scalar
multiplication of functions, V™ is a vector space.

9.26 example: m-linear forms
e Suppose a, p € V2, Define a function B: V* — F by

B(v1,05,03,04) = a(vq,0,) P(V3,0y).
Then g € V&
e Define B: (£(V))" — F by
IB(T17 ey Tm> = tl‘(Tl---Tm).

Then g is an m-linear form on £(V).
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Alternating multilinear forms, which we now define, play an important role as
we head toward defining determinants.

-

9.27 definition: alternating forms, V;IT )

~

Suppose m is a positive integer.

e An m-linear form a on V is called alternating if a(v4, ..., v,,) = 0 whenever
Uy, .., Uy, is @ list of vectors in V with v; = vy for some two distinct values
of jand kin {1, ..., m}.

o V"™ = {x € VU™ : g is an alternating m-linear form on V}.

\ alt )

You should verify that V"’ is a subspace of V™. See Example 9.15 for
examples of alternating 2-linear forms. See Exercise 2 for an example of an
alternating 3-linear form.

The next result tells us that if a linearly dependent list is input to an alternating

multilinear form, then the output equals 0.

( 9.28 alternating multilinear forms and linear dependence

Suppose m is a positive integer and « is an alternating m-linear form on V. If
vy, ...,0,, is a linearly dependent list in V, then

(01, ..., 0,,) = 0.

Proof Suppose v4, ..., v, is a linearly dependent list in V. By the linear depen-
dence lemma (2.19), some v, is a linear combination of v, ..., v, _;. Thus there
exist by, ..., b, _q such that v, = byv; + -+ + by _10;_1. Now

k=1
&(Vq,y ..., 0,y,) = w(vl,...,vk_l, Z bjvj, U 41, ...,vm)
j=1
k=1
= Z by (01, ooy U1, 0y Vg 1 -0 Upy)
j=1
=0.

The next result states that if m > dim V, then there are no alternating m-linear
forms on V other than the function on V" that is identically 0.

( 9.29 no nonzero alternating m-linear forms for m > dim V W

kSuppose m > dim V. Then 0 is the only alternating m-linear form on V. J

Proof Suppose that « is an alternating m-linear form on V and v4, ...,v,, € V.
Because m > dim V, this list is not linearly independent (by 2.22). Thus 9.28
implies that (v, ...,v,,) = 0. Hence « is the zero function from V™ to F.
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Alternating Multilinear Forms and Permutations

(9.30 swapping input vectors in an alternating multilinear form w

Suppose m is a positive integer, « is an alternating m-linear form on V, and
01, ---s Uy, 1s a list of vectors in V. Then swapping the vectors in any two slots
of a(vy, ..., v,,) changes the value of « by a factor of —1.

Proof Put v; + v, in both the first two slots, getting
0 =a(vy +0y,01 + 03,03, ..., Uyy,).

Use the multilinear properties of & to expand the right side of the equation above
(as in the proof of 9.16) to get

(05, 01,03, ...,0,,) = —&(V1,05p, 03, ..., Vpp,).

Similarly, swapping the vectors in any two slots of (v, ...,v,,) changes the
value of « by a factor of —1.

To see what can happen with multiple swaps, suppose « is an alternating
3-linear form on V and vy,v,,v53 € V. To evaluate a(vs,v;,v,) in terms of
«(vq,0,,03), start with a(vs,v1,v,) and swap the entries in the first and third
slots, getting a(v5, v1,v,) = —a(v,,01,03). Now in the last expression, swap the
entries in the first and second slots, getting

w(03,0q,09) = —&(0,,0q,03) = &(0q, Uy, Uz).

More generally, we see that if we do an odd number of swaps, then the value of &
changes by a factor of —1, and if we do an even number of swaps, then the value
of & does not change.

To deal with arbitrary multiple swaps, we need a bit of information about
permutations.

6.31 definition: permutation, permm A

Suppose m is a positive integer.

e A permutation of (1,...,m) is a list (j;,...,j,,) that contains each of the
numbers 1, ..., m exactly once.

K. The set of all permutations of (1, ...,m) is denoted by perm m. )
For example, (2,3,4,5,1) € permb5. You should think of an element of
perm m as a rearrangement of the first m positive integers.
The number of swaps used to change a permutation (jy, ...,j,,) to the stan-
dard order (1, ...,m) can depend on the specific swaps selected. The following
definition has the advantage of assigning a well-defined sign to every permutation.




Section 9B Alternating Multilinear Forms 349

(9 N

.32 definition: sign of a permutation

The sign of a permutation (j,, ..., j,,) is defined by
Sign(jy, s ) = (_1)N»

where N is the number of pairs of integers (k,{) with 1 < k < ¢ < m such
that k appears after £ in the list (j;, ..., ,,,)- p

N

Hence the sign of a permutation equals 1 if the natural order has been changed
an even number of times and equals —1 if the natural order has been changed an
odd number of times.

| 9.33 example: signs

e The permutation (1, ...,m) [no changes in the natural order] has sign 1.
e The only pair of integers (k, ) with k < £ such that k appears after { in the list
(2,1,3,4) is (1,2). Thus the permutation (2,1, 3,4) has sign —1.

e In the permutation (2,3, ...,m, 1), the only pairs (k, £) with k < ¢ that appear
with changed order are (1,2), (1, 3), ..., (1, m). Because we have m — 1 such
pairs, the sign of this permutation equals (—1)"~1.

ﬁ?.34 swapping two entries in a permutation w

Swapping two entries in a permutation multiplies the sign of the permutation
by —1.

Proof Suppose we have two permutations, where the second permutation is
obtained from the first by swapping two entries. The two swapped entries were
in their natural order in the first permutation if and only if they are not in their
natural order in the second permutation. Thus we have a net change (so far) of 1
or —1 (both odd numbers) in the number of pairs not in their natural order.

Consider each entry between the two swapped entries. If an intermediate entry
was originally in the natural order with respect to both swapped entries, then it
is now in the natural order with respect to neither swapped entry. Similarly, if
an intermediate entry was originally in the natural order with respect to neither
of the swapped entries, then it is now in the natural order with respect to both
swapped entries. If an intermediate entry was originally in the natural order with
respect to exactly one of the swapped entries, then that is still true. Thus the net
change (for each pair containing an entry between the two swapped entries) in the
number of pairs not in their natural order is 2, —2, or 0 (all even numbers).

For all other pairs of entries, there is no change in whether or not they are in
their natural order. Thus the total net change in the number of pairs not in their
natural order is an odd number. Hence the sign of the second permutation equals
—1 times the sign of the first permutation.
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/9.35 permutations and alternating multilinear forms )
Suppose m is a positive integer and & € V{"”. Then
&0, .., 0; ) = (SN s eoes i) )E(V 15 ooy Tpy)
for every list v, ...,v,, of vectors in V and all (j, ...,j,,) € permm. )

Proof  Suppose vy,...,v,, € V and (j;,....j,,) € permm. We can get from
(J1s -+ J) to (1, ...,m) by a series of swaps of entries in different slots. Each such
swap changes the value of & by a factor of —1 (by 9.30) and also changes the sign
of the remaining permutation by a factor of —1 (by 9.34). After an appropriate
number of swaps, we reach the permutation 1, ..., m, which has sign 1. Thus the
value of « changed signs an even number of times if sign(jy, ...,j,,) = 1 and an
odd number of times if sign(jy, ...,j,,) = —1, which gives the desired result.

Our use of permutations now leads in a natural way to the following beautiful
formula for alternating n-linear forms on an n-dimensional vector space.

(e )

9.36 formula for (dim V)-linear alternating forms on V

Let n = dim V. Suppose e;, ..., e, is a basis of V and v, ...,v,, € V. For each
ke {1,...n}, letby 4, ...,b, , € F be such that

n
O = Z bj’ke]u
j=1
Then

(01, .y 0,) = (eq, ---,8,) Z (signgy, s fu))bj,17 b, n

(15 -+-s]) € permn

for every alternating n-linear form « on V.

Proof  Suppose « is an alternating n-linear form « on V. Then

n

n
(vq,...,0,) = “('21 bjplejl, ‘21 bjmnej”)
J1=

In

1=

f1=
= > bj by, (e s o€ )

<j1 """ jn)EPermn

n
" Z bjlvl.”bjmna(ejl’."’ejl1)
1 Ju=1

=w(eq,....e,) Z (Sign(]'lv""jn))bjl,l"'bj,,,i1’

(j1»e-sfn) EPErmn

where the third line holds because a (e, e]»") = 0iff,...,j, are not distinct
integers, and the last line holds by 9.35.
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The following result will be the key to our definition of the determinant in the
next section.

(9.37 dim V™Y =1 w

LThe vector space V,jldtim V) has dimension one. J

Proof Letn = dim V. Suppose « and &’ are alternating n-linear forms on V with
a # 0. Letey, ...,e, be such that a(e,, ...,e,) # 0. There exists ¢ € F such that

a'(eq,....e,) = ca(eq,....e,).

Furthermore, 9.28 implies that e, ..., e, is linearly independent and thus is a basis
of V.
Suppose v, ...,v, € V. Let b]-.k be as in 9.36 for j,k = 1, ...,n. Then

&' (Vg s 0y,) = &' (€1, -..r€,)) Z (sign(]'l,...,jn))b]-“l---bjwn

(j1s++sJp) € permn

= ca(eq, ..., €,) Z ($ign(yses Ju) )by 170;

(J1s+s]n) € permn

= ca(Vq,...,0,),

where the first and last lines above come from 9.36. The equation above implies
that o' = ca. Thus &'« is not a linearly independent list, which implies that
dim V) < 1.

To complete the proof, we only need to show that there exists a nonzero
alternating n-linear form & on V (thus eliminating the possibility that dim V;{:)
equals 0). To do this, let e, ..., e, be any basis of V, and let ¢, ...,p,, € V' be
the linear functionals on V that allow us to express each element of V as a linear

combination of e, ...,e,. In other words,
n
v=) 90

j=1
for every v € V (see 3.114). Now for vy, ...,v,, € V, define
9.38 a(vq,...,0,) = Z (Sign(ys e Ju) ) @5, (01) @), (0y).

(J1s--sJ,) Epermn

The verification that a is an n-linear form on V is straightforward.

To see that « is alternating, suppose vy, ...,v, € V with v; = v,. For each
(15 ---»J») € permn, the permutation (j,, j;,/3, ..., ,) has the opposite sign. Be-
cause v; = U,, the contributions from these two permutations to the sum in 9.38
cancel either other. Hence a(v;,v¢, 73, ...,v,,) = 0. Similarly, (v, ...,v,)) = 0if
any two vectors in the list v4, ..., v,, are equal. Thus « is alternating.

Finally, consider 9.38 with each v, = ¢,. Because ¢;(e,) equals 0 if j # k and
equals 1 if j = k, only the permutation (1, ..., ) makes a nonzero contribution to
the right side of 9.38 in this case, giving the equation a(e4, ...,e,) = 1. Thus we
have produced a nonzero alternating n-linear form « on V, as desired.
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Earlier we showed that the value of The formula 9.38 used in the last proof
an alternating multilinear form applied 1, construct a nonzero alternating n-
to a linearly dependent list is 0; see 9.28. linear form came from the formula in
The next result provides a converse of 936, and that formula arose naturally
9.28 for n-linear multilinear forms when  from the properties of an alternating
n = dim V. In the following result, the  multilinear form.
statement that « is nonzero means (as
usual for a function) that « is not the function on V" that is identically 0.

9.39 alternating (dim V')-linear forms and linear independence

Let n = dim V. Suppose « is a nonzero alternating n-linear form on V and
eq,-..,e, is a list of vectors in V. Then

aeq,....e,) #0

if and only if ey, ..., e, is linearly independent.
S yire y p )

Proof  First suppose «(eq, ...,e,) # 0. Then 9.28 implies that e, ..., e,, is linearly
independent.

To prove the implication in the other direction, now suppose ey, ..., e,, is linearly
independent. Because n = dim V, this implies that e, ..., e, is a basis of V (see
2.38).

Because « is not the zero n-linear form, there exist v4, ...,v, € V such that
a(vq,...,0,) # 0. Now 9.36 implies that a(eq, ...,e,) # 0.

Exercises 9B

1 Suppose m is a positive integer. Show that dim V™ = (dim V)™

2 Supposen >3 and a: F* x F* x F* — F is defined by

(1, o0 X )s Yo Y)s (2150000 2))

= X1Ya23 — XoY123 — X3loZ1 — XqY3Zp + X312y + XolY37Zy.
Show that « is an alternating 3-linear form on F".

3 Suppose m is a positive integer and « is an m-linear form on V such that
&(0q, ..., vy) = 0 whenever vy, ..., v,, is a list of vectors in V with v; = v; 4
for some j € {1, ...,m —1}. Prove that « is an alternating m-linear form on V.

4  Prove or give a counterexample: If & € V1, then

alt ?
{(v1,05,05,04) € V* 1 a(vy,05,04,04) = 0}

is a subspace of V4
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Suppose m is a positive integer and § is an m-linear form on V. Define an
m-linear form « on V by

K(Vqy .0y Vyyy) = Z (sign(jl,...,jm)),B(vh,...,vjm)

(j1-eesfm) € permm

for vy, ...,v,, € V. Explain why « € V.

Suppose m is a positive integer and § is an m-linear form on V. Define an
m-linear form « on V by

(01, .0y Uyyy) = Z /S(Ujl,...,vjm)

(1> Jm) € permim

for vy, ...,v,, € V. Explain why
A(Vg, 5 oens Vg, ) = X(Vq, 00, V)
forall vq,...,v,, € Vand all (k,...,k,,) € permm.

Give an example of a nonzero alternating 2-linear form a on R® and a linearly
independent list v;,v, in R® such that & (v,,v,) = 0.
This exercise shows that 9.39 can fail if the hypothesis that n = dim V is
deleted.



354 Chapter 9  Multilinear Algebra and Determinants
9C Determinants

Defining the Determinant

The next definition will lead us to a clean, beautiful, basis-free definition of the
determinant of an operator.

(9.40 definition: )

Suppose that m is a positive integer and T € £(V). Fora € V", define

() alt °
ar €V, by

ar(vq, .., 0,) = a(Toq, ..., Tv,,)

Gor each list vq, ..., v,, of vectors in V.

J

Suppose T € £L(V). If x € V;ﬂ” and vy, ...,v,, is a list of vectors in V with

v = U for some j # k, then ij = Twv,, which implies that a(v4, ...,v,,) =
&(Tvy, ..., To,,) = 0. Thus the function « — a; is a linear map of V| to itself.

We know that dim V;ﬂimv) = 1 (see 9.37). Every linear map from a one-
dimensional vector space to itself is multiplication by some unique scalar. For

the linear map « — ap, we now define det T to be that scalar.

(9.41

definition: determinant of an operator, det T N

Suppose T € £(V). The determinant of T, denoted by det T, is defined to be
the unique number in F such that

ap = (detT) w

for all x € V4imY),
K alt j

| 9.42 example: determinants of operators |
Letn = dim V.

e If I is the identity operator on V, then a; = a for all w € Véﬁ). Thus detl = 1.

e More generally, if A € F, thena,; = A"a foralla € V;l’:). Thus det(Al) = A™

o Still more generally, if T € £(V) and A € F, then a, = Ao = A" (det T)a
foralla € V. Thus det(AT) = A" det T.

e Suppose T € £(V) and there is a basis e, ..., €,, of V consisting of eigenvectors
of T, with corresponding eigenvalues A4, ..., A,. If a € V,jl’tl), then

ar(eq,....e,) = w(Aqeq,...,A8,) = (AyA)aleq,....e,).

If « + 0, then 9.39 implies «(eq, ...,e,) # 0. Thus the equation above implies

detT = Ay-A,.
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Our next task is to define and give a formula for the determinant of a square
matrix. To do this, we associate with each square matrix an operator and then
define the determinant of the matrix to be the determinant of the associated
operator.

9.43 definition: determinant of a matrix, det A

Suppose that n is a positive integer and A is an n-by-n square matrix with
entries in F. Let T € £(F") be the operator whose matrix with respect to
the standard basis of F" equals A. The determinant of A, denoted by det A, is
defined by det A = det T.

9.44 example: determinants of matrices

e If ] is the n-by-n identity matrix, then the corresponding operator on F” is the
identity operator I on F”. Thus the first bullet point of 9.42 implies that the
determinant of the identity matrix is 1.

e Suppose A is a diagonal matrix with A, ..., A, on the diagonal. Then the
corresponding operator on F" has the standard basis of F" as eigenvectors,
with eigenvalues A4, ...,A,. Thus the last bullet point of 9.42 implies that
detA = A7,

For the next result, think of each list v4, ..., v, of n vectors in F" as a list of
n-by-1 column vectors. The notation ( v; -+ v, ) then denotes the n-by-n
square matrix whose k™ column is v, foreachk = 1,...,n.

(9.45 determinant is an alternating multilinear form w

Suppose that # is a positive integer. The map that takes a list vy, ...,v,, of
vectors in F” to det ( (BT /S ) is an alternating n-linear form on F".

Proof Letey,...,e, be the standard basis of F"and suppose vy, ..., v,, is a list of
vectors in F*. Let T € £(F") be the operator such that Te, = v, fork = 1,...,n.

Thus T is the operator whose matrix with respect to ey, ...,e, is ( v; -+ v, ).
Hence det ( (BT /8 ) = det T, by definition of the determinant of a matrix.
Let « be an alternating n-linear form on F”* such that a(ey, ...,e,,) = 1. Then
det( vy -+ v, )=detT
= (detT) a(eq, ..., €,)
=ua(Teq,....Te,)
= &(0q, .., 0y),

where the third line follows from the definition of the determinant of an operator.
The equation above shows that the map that takes a list of vectors vy, ..., v, in F"
todet( v; - v, )is the alternating n-linear form a on F".
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The previous result has several important consequences. For example, it
immediately implies that a matrix with two identical columns has determinant 0.
We will come back to other consequences later, but for now we want to give a
formula for the determinant of a square matrix. Recall that if A is a matrix, then
Aj i denotes the entry in row j, column k of A.

(9.46 formula for determinant of a matrix

Suppose that 7 is a positive integer and A is an n-by-n square matrix. Then

detA = > (SigN(irs vees fu) ) Ajy 1704y

(J15->Jn) E pErmn

Proof  Apply 9.36 with V = F" and e, ..., ¢, the standard basis of F" and « the
alternating n-linear form on F" that takes vy, ...,v, todet( v; - v, ) [see
9.45]. If each v, is the k™ column of A, then each b; « in 9.36 equals A, ;.. Finally,

a(ey,....e,) =det( e - e, )=detl =1

Thus the formula in 9.36 becomes the formula stated in this result.

9.47 example: explicit formula for determinant
o If Ais a 2-by-2 matrix, then the formula in 9.46 becomes
detA =A; 1Ay 5 — Ay 1A,
e If A is a 3-by-3 matrix, then the formula in 9.46 becomes
detA =Ay 1Ay 2A3 3 — Ay 1A oAz 3 — Az 145 244 5
— Ay 1 A3 045 3+ A3 1Ay 24y 3 + Ay 1 A3 04 3.

The sum in the formula in 9.46 contains n! terms. Because n! grows rapidly as
n increases, the formula in 9.46 is not a viable method to evaluate determinants
even for moderately sized n. For example, 10! is over three million, and 100! is
approximately 1018, leading to a sum that the fastest computer cannot evaluate.
We will soon see some results that lead to faster evaluations of determinants than
direct use of the sum in 9.46.

(9.48 determinant of upper-triangular matrix w

Suppose that A is an upper-triangular matrix with A4, ..., A,, on the diagonal.
Then detA = A;---A,,.

Proof If (fy,....j,) € permn with (j;,...,j,) # (1,...,n), then j, > k for some
k € {1,...,n}, which implies that Aj.x = 0. Thus the only permutation that
can make a nonzero contribution to the sum in 9.46 is the permutation (1, ..., n).
Because Ay , = Ay foreach k = 1, ..., n, this implies that detA = A;--A,,.
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Properties of Determinants

Our definition of the determinant leads to the following magical proof that the
determinant is multiplicative.

9.49 determinant is multiplicative

(a) Suppose S, T € £(V). Then det(ST) = (detS)(det T).

(b) Suppose A and B are square matrices of the same size. Then

det(AB) = (det A)(det B)

Proof

(a) Letn = dim V. Suppose « € V) and v,,...,v, € V. Then

agr(vq,...,0,) = a(STvq,...,STv,)
= (detS)a(Tvy,...,Tv,)
= (detS)(det T)a(vy, ..., 0,),
where the first equation follows from the definition of w g, the second equation

follows from the definition of det S, and the third equation follows from the
definition of det T. The equation above implies that det(ST) = (detS)(det T).

(b) LetS, T € £(F") be such that M'(S) = Aand M (T) = B, where all matrices
of operators in this proof are with respect to the standard basis of F”. Then
M(ST) = M(S)M(T) = AB (see 3.43). Thus

det(AB) = det(ST) = (detS)(detT) = (det A)(det B),

where the second equality comes from the result in (a).

The determinant of an operator determines whether the operator is invertible.

(9.50 invertible < nonzero determinant w

T is invertible, then det(T~1) = —

LAn operator T € £(V) is invertible if and only if det T # 0. Furthermore, ifJ
= dettT”

Proof  First suppose T is invertible. Thus TT~! = I. Now 9.49 implies that
1=detl =det(TT™') = (det T)(det(T1)).
Hence det T # 0 and det(T~!) is the multiplicative inverse of det T.
To prove the other direction, now suppose detT # 0. Suppose v € V and

v # 0. Letv,e,, ...,e, be a basis of Vand leta € Vﬂt‘) be such that w # 0. Then
a(v,ey,...,e,) # 0(by 9.39). Now

a(To, Te,, ..., Te,) = (detT)a(v, ey, ...,e,) # 0,
Thus Tv # 0. Hence T is invertible.
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An n-by-n matrix A is invertible (see 3.80 for the definition of an invertible
matrix) if and only if the operator on F” associated with A (via the standard basis
of F") is invertible. Thus the previous result shows that a square matrix A is
invertible if and only if det A # 0.

(9.51 eigenvalues and determinants w

Suppose T € £(V) and A € F. Then A is an eigenvalue of T if and only if
det(Al —T) = 0.

Proof The number A is an eigenvalue of T if and only if T — Al is not invertible
(see 5.7), which happens if and only if AI — T is not invertible, which happens if
and only if det(Al — T) = 0 (by 9.50).

Suppose T € £(V) and S: W — V is an invertible linear map. To prove that
det(S7ITS) = det T, we could try to use 9.49 and 9.50, writing

det(S7ITS) = (detS~1)(det T') (det S)
=detT.

That proof works if W = V, but if W # V then it makes no sense because the
determinant is defined only for linear maps from a vector space to itself, and S
maps W to V, making det S undefined. The proof given below works around this
issue and is valid when W # V.

9.52 determinant is a similarity invariant

Suppose I € £(V) and S: W — V is an invertible linear map. Then
det(S7ITS) = det T.

Proof Letn = dimW = dim V. Suppose T € W/;’. Define « € V;!’ by
a(vq,...,0,) = (S 1vq,...,5710,)
for vy, ...,v,, € V. Suppose wy, ...,w,, € W. Then
To-175(Wy, oy wy,) = T(STITSwy, ..., STITSw,,)
= a(TSwy,...,TSw,)
= ap(Swy, ..., Sw,)
= (detT)a(Swy, ..., Sw,,)

= (detT)t(wyq, ..., w,).

The equation above and the definition of the determinant of the operator S~!TS
imply that det(S™'TS) = det T.
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For the special case in which V = F" and ey, ..., ¢, is the standard basis of F”,
the next result is true by the definition of the determinant of a matrix. The left
side of the equation in the next result does not depend on a choice of basis, which
means that the right side is independent of the choice of basis.

(9.53 determinant of operator equals determinant of its matrix

Suppose T € £(V) and ¢4, ..., e, is a basis of V. Then
detT = det M (T, (eq, ..-,€,))-

Proof Let fi,..., f, be the standard basis of F". Let S: F* — V be the linear
map such that Sf, = ¢, foreach k = 1,...,n. Thus M (S, (f1,.... f,), (€1, ...,€,))
and M (S7L, (eq, ..,€,)5 (fis ---» f)) both equal the n-by-n identity matrix. Hence

9.54 M(STITS, (fis - fu)) = M(T, ey, - €,)),
as follows from two applications of 3.43. Thus
detT = det(S7'TS)
=det M(S7'TS, (f1s s )
=det M (T, (e1,..-.€,)),

where the first line comes from 9.52, the second line comes from the definition of
the determinant of a matrix, and the third line follows from 9.54.

The next result gives a more intuitive way to think about determinants than the
definition or the formula in 9.46. We could make the characterization in the result
below the definition of the determinant of an operator on a finite-dimensional
complex vector space, with the current definition then becoming a consequence
of that definition.

(9.55 if F = C, then determinant equals product of eigenvalues w

Suppose F = Cand T € £(V). Then det T equals the product of the eigen-
values of T, with each eigenvalue included as many times as its multiplicity.

Proof There is a basis of V with respect to which T has an upper-triangular
matrix with the diagonal entries of the matrix consisting of the eigenvalues of T,
with each eigenvalue included as many times as its multiplicity—see 8.37. Thus
9.53 and 9.48 imply that det T equals the product of the eigenvalues of T, with
each eigenvalue included as many times as its multiplicity.

As the next result shows, the determinant interacts nicely with the transpose of
a square matrix, with the dual of an operator, and with the adjoint of an operator
on an inner product space.
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9.56 determinant of transpose, dual, or adjoint

-

(a) Suppose A is a square matrix. Then det A' = det A.
(b) Suppose T € £(V). ThendetT" = detT.
(c) Suppose V is an inner product space and T € £(V). Then

det(T*) = detT.

Proof

(a)

(b)
(©)

Let 1 be a positive integer. Define a: (F")" — F by

t
(o = 9,))=det(( 0 = 0, ))
for all v4,...,v,, € F". The formula in 9.46 for the determinant of a matrix
shows that « is an n-linear form on F”.

Suppose vy, ...,v, € F" and v; = vy for some j # k. If B is an n-by-n matrix,

then ( v; - o, )tB cannot equal the identity matrix because row j and
rowkof ( o, - v, )'Bareequal. Thus ( v, - v, )t is not invertible,
which implies that oc(( v, - D, )) = 0. Hence «a is an alternating n-

linear form on F”.

Note that « applied to the standard basis of F”" equals 1. Because the vector
space of alternating n-linear forms on F" has dimension one (by 9.37), this
implies that « is the determinant function. Thus (a) holds.

The equation det T" = det T follows from (a) and 9.53 and 3.132.

Pick an orthonormal basis of V. The matrix of T* with respect to that basis is
the conjugate transpose of the matrix of T with respect to that basis (by 7.9).
Thus 9.53, 9.46, and (a) imply that det(T*) = det T.

9.57 helpful results in evaluating determinants

(a) If either two columns or two rows of a square matrix are equal, then the

(b) Suppose A is a square matrix and B is the matrix obtained from A by

(c) If one column or one row of a square matrix is multiplied by a scalar, then

(d) If a scalar multiple of one column of a square matrix to added to another

(e) If a scalar multiple of one row of a square matrix to added to another row,

determinant of the matrix equals 0.

swapping either two columns or two rows. Then det A = — det B.

the value of the determinant is multiplied by the same scalar.

column, then the value of the determinant is unchanged.

then the value of the determinant is unchanged. )
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Proof All the assertions in this result follow from the result that the maps
t
U1, ...,0, = det( vy -+ v, )andvy,..,v, » det( v; - v, ) are both
alternating n-linear forms on F" [see 9.45 and 9.56(a)].
For example, to prove (d) suppose vy, ...,v,, € F* and ¢ € F. Then

det( vy +cv, v, - v, )
=det(v; v, - v, )+cdet( v, v, vy - vV, )
=det( v, v, - v, ),

where the first equation follows from the multilinearity property and the second
equation follows from the alternating property. The equation above shows that
adding a multiple of the second column to the first column does not change the
value of the determinant. The same conclusion holds for any two columns. Thus
(d) holds.

The proof of (e) follows from (d) and from 9.56(a). The proofs of (a), (b), and
(c) use similar tools and are left to the reader.

For matrices whose entries are concrete numbers, the result above leads to a
much faster way to evaluate the determinant than direct application of the formula
in 9.46. Specifically, apply the Gaussian elimination procedure of swapping
rows [by 9.48(b), this changes the determinant by a factor of —1], multiplying
a row by a nonzero constant [by 9.48(c), this changes the determinant by the
same constant|, and adding a multiple of one row to another row [by 9.48(e), this
does not change the determinant] to produce an upper-triangular matrix, whose
determinant is the product of the diagonal entries (by 9.48). If your software keeps
track of the number of row swaps and of the constants used when multiplying a
row by a constant, then the determinant of the original matrix can be computed.

Because a number A € F is an eigenvalue of an operator T € £(V) if and
only if det(Al — T) = 0 (by 9.51), you may be tempted to think that one way
to find eigenvalues quickly is to choose a basis of V, let A = M (T), evaluate
det(AI — A), and then solve the equation det(Al — A) = 0 for A. However, that
procedure is rarely efficient, except when dim V' = 2 (or when dim V equals 3 or
4 if you are willing to use the cubic or quartic formulas). One problem is that the
procedure described in the paragraph above for evaluating a determinant does not
work when the matrix includes a symbol (such as the A in Al — A). This problem
arises because decisions need to be made in the Gaussian elimination procedure
about whether certain quantities equal 0, and those decisions become complicated
in expressions involving a symbol A.

Recall that an operator on a finite-dimensional inner product space is unitary
if it preserves norms (see 7.51 and the paragraph following it). Every eigenvalue
of a unitary operator has absolute value 1 (by 7.54). Thus the product of the
eigenvalues of a unitary operator has absolute value 1. Hence (at least in the case
F = C) the determinant of a unitary operator has absolute value 1 (by 9.55). The
next result gives a proof that works without the assumption that F = C.
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G.SS every unitary operator has determinant with absolute value 1

[

Suppose V is an inner product space and S € £(V) is a unitary operator.
Then |detS| = 1.

Proof Because S is unitary, [ = S*S (see 7.53). Thus
1 = det(S*S) = (det S*)(det S) = (det S)(detS) = |det S,
where the second equality comes from 9.49(a) and the third equality comes from

9.56(c). The equation above implies that |[det S| = 1.

The determinant of a positive operator on an inner product space meshes well
with the analogy that such operators correspond to the nonnegative real numbers.

(9.59 every positive operator has nonnegative determinant w

Suppose V is an inner product space and T € £(V) is a positive operator.
Then det T > 0.

Proof By the spectral theorem (7.29 or 7.31), V has an orthonormal basis con-
sisting of eigenvectors of T. Thus by the last bullet point of 9.42, det T equals a
product of the eigenvalues of T, possibly with repetitions. Each eigenvalue of T is
a nonnegative number (by 7.38). Thus we conclude that det T > 0.

Suppose V is an inner product space and T € £(V). Recall that the list of
nonnegative square roots of the eigenvalues of T*T (each included as many times
as its multiplicity) is called the list of singular values of T (see Section 7E).

(9.60 |det T| = product of singular values of T w

Suppose V is an inner product space and T € £(V). Then

|det T| = y/det(T*T) = product of singular values of T.

Proof We have
et TP = (det T)(det T) = (det(T*))(detT) = det(T*T),

where the middle equality comes from 9.56(c) and the last equality comes from
9.49(a). Taking square roots of both sides of the equation above shows that
[det T| = y/det(T*T).

Let sy, ...,s, denote the list of singular values of T. Thus s ...,s,? is the
list of eigenvalues of T*T (with appropriate repetitions), corresponding to an
orthonormal basis of V consisting of eigenvectors of T*T. Hence the last bullet
point of 9.42 implies that

det(T*T) = sf-s,2

Thus |det T| = s;---5,,, as desired.
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An operator T on a real inner product space changes volume by a factor of the
product of the singular values (by 7.111). Thus the next result follows immediately
from 7.111 and 9.60. This result explains why the absolute value of a determinant
appears in the change of variables formula in multivariable calculus.

(9.61 T changes volume by factor of |det T|

Suppose T € £(R") and Q) C R”. Then

volume T'(Q)) = |det T|(volume Q)).

For operators on finite-dimensional complex vector spaces, we now connect
the determinant to a polynomial that we have previously seen.

G.GZ if F = C, then characteristic polynomial of T equals det(zl — T)

Suppose F = Cand T € £(V). Let A4, ..., A,,, denote the distinct eigenvalues
of T, and let dy, ..., d,, denote their multiplicities. Then

det(zI = T) = (z— Al)dl...(z _ /\m)d"'-

Proof There exists a basis of V with respect to which T has an upper-triangular
matrix with each A, appearing on the diagonal exactly d, times (by 8.37). With
respect to this basis, zI — T has an upper-triangular matrix with z — A, appearing
on the diagonal exactly d, times for each k. Thus 9.48 gives the desired equation.

Suppose F = Cand T € £(V). The characteristic polynomial of T was
defined in 8.26 as the polynomial on the right side of the equation in 9.62. We
did not previously define the characteristic polynomial of an operator on a finite-
dimensional real vector space because such operators may have no eigenvalues,
making a definition using the right side of the equation in 9.62 inappropriate.

We now present a new definition of the characteristic polynomial, motivated
by 9.62. This new definition is valid for both real and complex vector spaces.
The equation in 9.62 shows that this new definition is equivalent to our previous
definition when F = C (8.26).

(9.63 definition: characteristic polynomial N
Suppose T € £(V). The polynomial defined by
z — det(zl — T)
is called the characteristic polynomial of T. )

The formula in 9.46 shows that the characteristic polynomial of an opera-
tor T € £(V) is a monic polynomial of degree dim V. The zeros in F of the
characteristic polynomial of T are exactly the eigenvalues of T (by 9.51).
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Previously we proved the Cayley—Hamilton theorem (8.29) in the complex
case. Now we can extend that result to operators on real vector spaces.

(9.64 Cayley—Hamilton theorem W

LSuppose T € £(V) and g is the characteristic polynomial of T. Then q(T) = U

Proof If F = C, then the equation g(T) = 0 follows from 9.62 and 8.29.

Now suppose F = R. Fix a basis of V, and let A be the matrix of T with
respect to this basis. Let S be the operator on C%™V such that the matrix of S
(with respect to the standard basis of C™V) is A, For all z € R we have

q(z) = det(zl = T) = det(zl — A) = det(zl - S).

Thus g is the characteristic polynomial of S. The case F = C (first sentence of
this proof) now implies that 0 = g(S) = q(A) = q(T).

The Cayley—Hamilton theorem (9.64) implies that the characteristic polyno-
mial of an operator T € £(V) is a polynomial multiple of the minimal polynomial
of T (by 5.29). Thus if the degree of the minimal polynomial of T equals dim V,
then the characteristic polynomial of T equals the minimal polynomial of T. This
happens for a very large percentage of operators, including over 99.999% of
4-by-4 matrices with integer entries in [—100, 100] (see the paragraph following
5.25).

The last sentence in our next result was previously proved in the complex case
(see 8.54). Now we can give a proof that works on both real and complex vector
spaces.

(9.65 characteristic polynomial, trace, and determinant

Suppose T € £(V). Let n = dim V. Then the characteristic polynomial of T
can be written as

z" — (rT)z" 1 + oo + (=1)"(det T).

Proof The constant term of a polynomial function of z is the value of the poly-
nomial when z = 0. Thus the constant term of the characteristic polynomial of T
equals det(—T), which equals (—1)" det T (by the third bullet point of 9.42).

Fix a basis of V, and let A be the matrix of T with respect to this basis. The
matrix of zI — T with respect to this basis is zI — A. The term coming from the
identity permutation {1, ..., n} in the formula 9.46 for det(zl — A) is

(z =A@z = Ay

The coefficient of z” ! in the expression above is —(A; ; +---+A4,, ,,), which equals

—tr T. The terms in the formula for det(zI — A) coming from other elements of
perm 1 contain at most n — 2 factors of the form z— A, ; and thus do not contribute
to the coefficient of z~1 in the characteristic polynomial of T.
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In the result below. think of the The next result was proved by Jacques
columns of the n-by-n matrix A as ele- g, 0umard (1865-1963) in 1893.
ments of F”. The norms appearing below
then arise from the standard inner product on F”. Recall that the notation R_; in
the proof below means the k™ column of the matrix R (as was defined in 3.44).

( 9.66 Hadamard’s inequality

Suppose A is an n-by-n matrix. Let vy, ..., v,, denote the columns of A. Then

n
det A| < [ ol

k=1

Proof If A is not invertible, then det A = 0 and hence the desired inequality
holds in this case.

Thus assume that A is invertible. The QR factorization (7.58) tells us that
there exist a unitary matrix Q and an upper-triangular matrix R whose diagonal
contains only positive numbers such that A = QR. We have

|det A| = |det Q| |det R|
= |detR|

n
= l_[ Ry x
k=1
n
< [TR
k=1
n
= [T1QR 4
k=1

n
= [ 1ol
k=1

where the first line comes from 9.49(b), the second line comes from 9.58, the
third line comes from 9.48, and the fifth line holds because Q is an isometry.

To give a geometric interpretation to Hadamard’s inequality, suppose F = R.
Let T € £(R") be the operator such that Te, = v, for each k = 1,...,n, where
ey, ...,e, is the standard basis of R". Then T maps the box P(e, ...,e,,) onto the
parallelepiped P(vs, ...,v,) [see 7.102 and 7.105 for a review of this notation
and terminology]. Because the box P(ey, ...,e,) has volume 1, this implies (by
9.61) that the parallelepiped P(v, ..., v,,) has volume |det T|, which equals |det A|.
Thus Hadamard’s inequality above can be interpreted to say that among all paral-
lelepipeds whose edges have lengths |[v4], ..., [, the ones with largest volume
have orthogonal edges (and thus have volume ]_[Z: 1 ||vk||).

For a necessary and sufficient condition for Hadamard’s inequality to be an
equality, see Exercise 18.
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The matrix in the next result is called the Vandermonde matrix. Vandermonde
matrices have important applications in polynomial interpolation, the discrete
Fourier transform, and other areas of mathematics. The proof of the next result is
a nice illustration of the power of switching between matrices and linear maps.

9.67 determinant of Vandermonde matrix

Suppose n > 1 and f, ..., B, € F. Then

1 g B - BT
1 By B - B
det ' = [] ®-8

1<j<k<n

1 :Bn ;an nn_l

N J

Proof Let1,z,...,z" ! be the standard basis of 2, (F) and letey, ..., ¢, denote
the standard basis of F”. Define a linear map S: 7,_,(F) — F" by

Sp = (p(B1)s - P(B))-

Let A denote the Vandermonde matrix shown in the statement of this result.
Note that

A=M(S, (1,z,...,2"7 1), (e, ....e,)).

LetT: ?,_4(F) - P,_1(F) be the operator on P,_4(F) such that T1 = 1

and
TZ¢ = (2= B1)(z = Br)(z = Bp)

fork=1,...,n—1.Let B=M(T,(1,z,....2" '), (1,2,...,z2"1)). Then B is an
upper-triangular matrix all of whose diagonal entries equal 1. Thus det B = 1 (by
9.48).

Let C = M(ST,(1,z,....2" 1), (eq, ....e,)). Thus C = AB (by 3.81), which
implies that

det A = (det A)(det B) = detC.

The definitions of C, S, and T show that C equals

1 0 0 0
1 Br—5 0 0
1 Bo=B1 (Bs—B(PBz—P2) - 0

L Bo=B1 Bs=PBBs—=P2) - By =P1)By = o) By = Bu1)
Now detA = detC = n (B — B;), where we have used 9.56(a) and 9.48.

1<j<k<n
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Exercises 9C

1 Proveor give a counterexample: S, T € £(V) = det(S+T) = detS+det T.

2 Suppose the first column of a square matrix A consists of all zeros except
possibly the first entry A, ;. Let B be the matrix obtained from A by deleting
the first row and the first column of A. Show that det A = A, ; det B.

3 Suppose T € £(V) is nilpotent. Prove that det(I + T) = 1.
4 Suppose S € £(V). Prove that S is unitary if and only if |[det S| = |IS|| = 1.

5 Suppose A is a block upper-triangular matrix

Ay *
A= ,
0 A,

where each A, along the diagonal is a square matrix. Prove that
detA = (detA;)---(detA,,).

6 Suppose A= ( v; - v, )isann-by-n matrix, with v; denoting the k™
column of A. Show that if (m,,...,m,) € permn, then

det( v,, - v, )= (signimy,...m,))detA.

7 Suppose T € £(V) is invertible. Let p denote the characteristic polynomial
of T and let g denote the characteristic polynomial of T~!. Prove that

St

for all nonzero z € F.

8 Suppose T € £(V) is an operator with no eigenvalues (which implies that
F = R). Prove that det T > 0.

9 Suppose that V is a real vector space of even dimension, T € £(V), and
detT < 0. Prove that T has at least two distinct eigenvalues.

10  Suppose V is a real vector space of odd dimension and T € £(V'). Without
using the minimal polynomial, prove that T has an eigenvalue.

This result was previously proved without using determinants or the charac-
teristic polynomial—see 5.34.

11  Prove or give a counterexample: If F = R, T € £(V),and det T > 0, then
T has a square root.

IfF=C, Te L(V),and detV # 0, then V has a square root (see 8.41).
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Suppose S, T € £(V) and S is invertible. Define p: F — F by

p(z) = det(zS —T).
Prove that p is a polynomial of degree dim V and that the coefficient of z4imV
in this polynomial is det S.

Suppose F = C, T € £(V),andn = dimV > 2. Let A,..., A, denote
the eigenvalues of T, with each eigenvalue included as many times as its
multiplicity.

(a) Find a formula for the coefficient of z" =2 in the characteristic polynomial
of T'in terms of A, ..., A,,.

(b) Find a formula for the coefficient of z in the characteristic polynomial
of Tinterms of Ay,..., A,.

Suppose V is an inner product space and T is a positive operator on V. Prove

that
det VT = VdetT.

Suppose V is an inner product space and T € £(V'). Use the polar decom-
position to give a proof that

Idet T| = y/det(T*T)

that is different from the proof given earlier (see 9.60).

Suppose T' € £(V). Define g: F — F by g(x) = det(I + xT). Show that
g'(0) =trT.
Look for a clean solution to this exercise, without using the explicit but
complicated formula for the determinant of a matrix.

Suppose a, b, ¢ are positive numbers. Find the volume of the ellipsoid

. 2R 2
{(x,y,z)ER a_2+b_2+c_2<1}

by finding a set Q) C R® whose volume you know and an operator T on R®

such that T'(Q) equals the ellipsoid above.

Suppose that A is an invertible square matrix. Prove that Hadamard’s
inequality (9.66) is an equality if and only if each column of A is orthogonal
to the other columns.

Suppose V is an inner product space, e, ..., ¢, is an orthonormal basis of V,

and T € £(V) is a positive operator.

(a) Prove thatdetT < [T/ _,(Te ep).

(b) Prove that if T is invertible, then the inequality in (a) is an equality if
and only if e, is an eigenvector of T foreach k = 1, ..., n.
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20  Suppose A is an n-by-n matrix, and suppose c is such that |A; ;| < c for all
i,k € {1,...,n}. Prove that

|det A] < ¢"n™/2

The formula for the determinant of a matrix (9.46) shows that |det A| < ¢"nl.
However, the estimate given by this exercise is much better. For example, if
c =1and n =100, then c"n! ~ 108 but the estimate given by this exercise
is the much smaller number 10'%C. If n is an integer power of 2, then the
inequality above is sharp and cannot be improved.

21 Suppose n is a positive integer and §: C™" — C is a function such that
5(AB) = 8(A) - 5(B)

for all A, B € C*" and §(A) equals the product of the diagonal entries of A
for each diagonal matrix A € C™". Prove that

0(A) =detA

forall A € C™".
Recall that C™" denotes set of n-by-n matrices with entries in C. This
exercise shows that the determinant is the unique function defined on square
matrices that is multiplicative and has the desired behavior on diagonal
matrices. This result is analogous to Exercise 10 in Section 8D, which
shows that the trace is uniquely determined by its algebraic properties.

I find that in my own elementary lectures, I have, for pedagogical reasons, pushed
determinants more and more into the background. Too often I have had the expe-
rience that, while the students acquired facility with the formulas, which are so
useful in abbreviating long expressions, they often failed to gain familiarity with
their meaning, and skill in manipulation prevented the student from going into all
the details of the subject and so gaining a mastery.

—Elementary Mathematics from an Advanced Standpoint: Geometry, Felix Klein



